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On Classical Ferromagnets with a 
Complex External Field 

A. Messager, l S. Miracle-Sole, I C. E. Pfister 1'2 

Received July 8, 1983 

We prove analyticity properties of correlation functions using correlation in- 
equalities. 
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1o I N T R O D U C T I O N  

In this note we prove analyticity properties of the correlation functions in 
the external magnetic field h for some ferromagnetic one-component  mod- 
els, provided [Reh] > ]Imh]. Our proof is closely related to the work of 
Dunlop (1) and is a simple consequence of our extension of the correlation 
inequalities of Ginibre, (2) which we used to study the translation invariant 
states of the planar rotor model. O) Our results hold in particular for the 
Ising model. In this case Lebowitz and Penrose proved stronger results, 
valid for ]Reh] > 0. (4) We also show that the infinite volume limit of a state 
constructed with a boundary field h b > 0 is independent of the magnitude 
of h b and hence equal to the state obtained from + boundary condition. 
This result was already proved by Lebowitz for the Ising model. (5) 

Some of our results, as well as other applications on the absence of 
symmetry breakdown of continuous symmetry in two-dimensional models, 
were announced in Ref. 6. 
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2. BASIC INEQUALITIES 

The main results of this section are the inequalities (2.16) and (2.t7). 
They are summarized at the end of the section. We first consider the Ising 
model. Let A be a finite set. For each x ~ A we have a spin variable s(x). 
In the absence of interactions the spins are independent random variables 
and s(x) is distributed according to the probability measure 

dlz(s(x)) = �89 [ 8(s(x)  + 1) + 6(s(x)  - 1)] (2.1) 

We introduce an external magnetic field h(x) and ferromagnetic interac- 
tions described by a two-body potential J(x,  y ) >  0. Hence the Gibbs 
measure is given by the expression 

z-'((h(x)))exp( 2 J(x.y).(x).(y)+ 2 h(x).(x)) II d,(.(x)) 
{x,y} cA x~A x~A 

(2.2) 

where the inverse temperature is equal to one and Z({h(x)})  is the 
partition function. Expectation values with respect to the measure (2.2) are 
denoted by ( . ) ( { h ( x ) } ) ,  In order to study the correlation functions 

\ x~A 1 A 
with complex external field h(x) we introduce another copy of our system 
with the external field h(x) and we consider the product 

( x ~ S ( X ) ) A ( { h ( X ) } ) ( x ~ S ' ( X ) ) A ( { h - - ~ }  ) (2.4) 

We now define new variables by the relations 

�89 + s ' (x))  = cos0(x),  �89 - s '(x)) = s in0(x)  (2.5) 

In our particular case O(x) = k(~r/2), k = 0, 1,2, 3. We notice that 

s(x)s'(x) = cos20(x) - sin20(x) = cos20(x)  (2.6) 

and for Reh(x)  = ht(x) > [Imh(x)] = Ih2(x)l 

h(x>(x) + h(x)~'(x) 

= h,(x)(s(x)  + s'(x)) + ih2(x)(s(x ) - s'(x)) 

= 2kl(x)cos O(x) + 2ih2(x)sinO(x ) 

= 2k(x)[chX(x)cosO(x) + ishX(x)sinO(x)] 

= 2k(x)cos[O(x) + iX(x)] (2.7) 

where k ( x ) >  0 and k2(x)=  h~(x ) -  h~(x). Using the variables O(x) the 
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product of the correlation functions in (2.4) can be written as the expecta- 
tion value of 

i-I cos 2O(x) (2.8) 
x ~ A  

with respect to the Gibbs measure of a 2 4 model, whose Boltzmann fac- 
tor is 

expl  ~] 2J(x,  y ) c o s [ 0 ( x ) -  0 (y ) ]  + ~, 2k(x )cos [0 (x )  + i2~(x)] 1 
k {x,y}cA x~A J 

(2.9) 

Using Proposition 1 of Ref. 3 we find that the expectation value of (2.8) 
decreases if we set h(x) ~ 0 in (2.9). Therefore we get the inequality 

( x ~ S ( X ) } A ( { h ( x ) } )  > ( x ~ s ( x ) } a ( ( k ( x ) }  ) (2.10) 

Similarly we have for the partition function 

[Z({h(x)})] > Z ( { k ( x ) } )  (2.11) 

which implies the result of Dunlop on the zeros of partition functions. (~) 
Our results are of course valid for any distribution dl,(s ) for which we 

can apply the method of Griffiths. (7) In such a case one can express s(x) as 
a sum of Ising variables oi(x ) = +_ 1, i = 1 , . . . ,  N as 

N 

s(x)  = E a,(x) (2.12) 
i = 1  

and the probability that s(x) = t, computed with respect to d/z(s), is equal 
to 

o,, ~ oN exp~aij~176 ~ exp~,aijoioj (2.13) 
. . . .  t,j ~ . . . . .  oN i,j  

where a O. > 0. Introducing the variables 

� 8 9  - -  O f ( X ) ]  = c o s O i ( x ) ,  �89 ) + O,'(X)] = sinO,(x) (2.14) 

and using 
N 

s(x)s '(x)  = E cos2Oi(x) + ~,, 2cos[0/(x)  + Oj(x)] (2.15) 
i =  1 i > j  

we can prove as before the inequality 

{ x ~ a S ( X ) m ( x ) ) a ( { h ( x ) } ) > ( x ~ S ( x ) m ( x ) ) ( { k ( x ) }  ) (2.16) 
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where m(x) are arbitrary positive integers. Similarly 

IZ({h(x)})l > Z ( (k (x ) } )  (2.17) 

By a limiting procedure we see that we can take for dlz(S) 

d~(s) = X[ --1,1](S) dS (2.18) 

Our results are also valid for the class of measures dt~(s) considered by 
Dunlop in Ref. 1. In this class we have for example the measures 

d~(s) = exp(-X6 s6 - ~k4 S4 - -  ~k2 $2) ds (2.19) 

with X 6 > 0, X 4 > 0, and X 2 real and 

d~t(s) = exp[ - ks 2n + P(s)]  ds (2.20) 

with P(s) any even polynomial with positive coefficients, 2n > degP and 
k > 0. Letting n going to infinity we get the measure 

d/, (s) = X[ - l.,l(s)exp [ P (s) 1 ds (2.21) 

[Notice that the case (2.19) with X 6 = 0 can be obtained with the method of 
Griffiths. (s) ] Indeed if we introduce 

_1_1 Is(x)  + s '(x)]  = r(x)cosO(x) (2.22) 

l_l_ Is(x)  - s'(x)l = r(x)sinO(x) (2.23) 

then 

s(x)s'(x) = �89 r(x) ]2cos 20(x) (2.24) 

and in the case (2.19) 

dpo(s) dlz(s') = exp(-X6 r6 - X4 r4 - X2r 2) 
(2.25) 

exp[cos220(�89 r4 + 3h6r6) ]r dr dO 

From this we get again (2.16) and (2.17) using a straightforward extension 
of Proposition 1 of Ref. 3 (see the discussion of Model 2 in Ref. 2). The 
case (2.20) is obtained using the results of Dunlop. (1) Instead of using the 
variables r(x), one used new variables r(x), defined by 

S(X)2n+ S'(X) 2n= T(X) 2n (2.26) 

The variable r can be expressed as 

r2n = ran I I  1 - -  C O S  2 COS220 (2.27) 
k =0 2n 

k e v e n  
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or 
n-2 [ (k + 1)Tr j-l/2n 

r = r /~ 1 - cos 2 cos220 (2.28) 
k=0 2n 
k even 

Therefore r can be expanded in a power series of the variable cos 20 with 
positive coefficients. 

Finally we prove the following inequalities for Reh > [Imhl: 

Re<s (X))A({ h (x) }) > <s (X))A( { k (x))) (2.29) 
Re(s(x)s(y))A({h(x)) ) >1 (s(x)s(y))A({k(x)})  (2.30) 

with k(x)  >>. O, k2(x) = [Reh(x)] 2 - [Imh(x)] 2, and 

Re(s (x ) )A( {h (x ) }  ) >1 [Im(s(x))A({h(x)})l (2.31) 

For example, in the Ising model (2.31) follows from 

@os[0(x) + i~l(x)])A({h(x)} ) >1 @osO(x))A({k(x)} ) (2.32) 

in the duplicated system. But the left-hand side of (2.32) is equal to 

ch~l (x )Re(s (x ) )A({h(x)}  ) - sh~l (x) Im(s(x) )A({h(x)}  ) (2.33) 

Dividing by ch~7(x) and letting n (x) - -~-  ~ we get the result (2.31). By 
taking ~7(x) = 0 we obtain (2.29). Inequalities (2.31) and the positivity of the 
left-hand side of (2.29) and (2.30) have already been proved by Dunlop. O) 

SUMMARY 

We have proved for a large class of ferromagnetic one-component spin 
systems with two-body interactions, including all models with a priori 
measures given by (2.13), (2.19), and (2.21), that the correlation functions, 
and the partition functions, with a complex external magnetic field h(x), 
[Re h (x)] > Jim h (x)l, satisfy the inequalities 

and, 

Iz({h(x)})l  > Z({k(x)})  

respectively, k(x)  > 0, k2(x) = [Re h(x)] 2 - [Im h(x)] 2. 

(2.35) 

3. APPLICATIONS 

In this section A is a finite subset of the lattice Z a and we assume that 
J(x ,  y)  = J (x  - y)  >1 0 is translation invariant and ~ x J ( x )  < ~ .  We also 
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assume that the partition functions and the correlation functions are well 
defined for all A and all real magnetic fields h(x). 

In our first application we want to give a short proof that 

lim / I-I [s(x)]m(X)>A(h ) = (x~A [s(x)lm(x)>(h) (3.1) 
AtZ d \ x E A 

is an analytic function of the external field h(x)= h for IReht > Ilmhl 
provided (2.34) and (2.35) are valid. Indeed, since we have free boundary 
conditions we know, by standard arguments using correlation inequalities, 
that the limit (3.1) exists and is positive if h is positive. Therefore if 
h ~ G  o = ( h ~ C : 0 < R e h < h  o , R e h > l l m h l ) , t h e n  

g A ( h )  = 1 
(1-Ix eA [ s(x) ]m(x)>A(h) (3.2) 

is analytic in Go and from (2.34) we see that there exists a constant M such 
that 

[gA(h)l < M, all A, h ~ G o (3.3) 

The theorem of Vitali ensures that limAy~gA(h ) = g(h) exists and defines an 
analytic function of h in G o. Since ga(h)=/= 0 in G o and g(h)> 0 for 
h ~ G o C? R, we have by Hurwitz theorem that g(h) 4 = 0 for h ~ G o. This 
implies that 

l i m (  1-I [S(X)]m(x)>A(h)-- 1 (3.4) 
A'~Z d xEA g(h) 

is analytic for h E G 0. The case with Re h < 0 is obtained by symmetry. 
Obviously the proof is valid for other boundary conditions provided we 
know the existence of the limit (3.1) for h real. 

In our second application we consider only bounded spins with finite 
range interactions and constant external field h >i 0. Without restricting the 
generality we suppose that 

sup(s : s ~ supp/~} = 1 (3.5) 

and the existence of R I> 1 such that 

J(x)>O if Ix[= 1 and J(x)=O if Ix I >  R (3.6) 

H e r e  Ixl 2 = ~-~d= I[Xl]2. For any finite set A c 7/a we define 

~RA = ( x ~ A :  dist(x, Za',A) < R } (3.7) 

The + boundary condition for the system in A is defined as usual by 
setting s(x)= + 1 for all x ~ A .  Equivalently we take free boundary 
condition and we add a boundary external field acting on x ~ ORA, 

hb(x) = 2 J ( x -  y) (3.8) 
y~A 
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The existence of the thermodynamic limit for the + boundary condition is 
a well-known fact. We define a new boundary condition by replacing the 
boundary field (3.8) by the boundary field 

hb(x ) = X > O, x E ORA (3.9) 

with ~ arbitrarily small. We claim that the infinite volume equilibrium state 
( �9 )x obtained from the boundary condition (3.9) is equal to the state ( �9 )+ 
obtained from + boundary condition. Indeed, if 

X E G = {)t ~ C :0 < Re~, Re~ > [Im)q} (3.10) 

we have for 

g a ( X )  _ 1 
1 + (s(x))XA (3.11) 

and 

the bounds 

f (x) = 1 1 + (s(x)s(y))x6 (3.12) 

]gA()~)] < 1, ]fA()t)[-<< 1 (3.13) 

as consequences of (2.29) and (2.30). From the inequalities of Griffiths and 
for real )t/> ~ xJ(x )  we have 

lim (s(x)>)~= (s(x)> + (3.14) 
A ? / J  

and 

lim ( s ( x ) s ( y ) > ~  = ( s ( x ) s ( y )>  + (3.15) 
A?Z a 

Using the theorems of Vitali and Hurwitz as in the first application we get 
that l ima(s(x))  ~ = ( s ( x ) )  ~ exists and is analytic in ~ ~ G, hence is equal to 
( s ( x ) )  + for )~ > 0. Similarly ( s ( x ) s ( y ) )  ~ = ( s ( x ) s ( y ) )  + if X > 0. Our 
assumption (3.6) implies that 

( s ( x ) s ( y ) )  + > 0, I x - y l  = 1 (3.16) 

From this and the preceding results we obtain using the inequalities of 
Lebowitz (~~ that ( .  >+ = ( - )x .  [We use (3.16) if (s(x)> + = 0, in order to 
prove that all odd correlation functions are zero and all even correlation 
functions are equal to those of ( - ) + . ]  

Remark .  Our second application concerning the boundary field is 
also valid for the planar rotor model since Dunlop proved in Ref. 9 the 
inequalities 

Re(cosO(x) )A(  ( h (x )  } ) >1 0 (3.17) 
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and 

Re(cos[O(x) + O(y)]>A((h(x)} ) >i 0 

valid for Reh(x) > IImh(x)l, where h(x) is an external field 

-  h(x)cose(x) 

(3.18) 

(3.19) 

By arguing as above the result follows then from Ref. 3, which contains the 
generalization of Ref. 10 for this model. 
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