On Classical Ferromagnets with a Complex External Field

A. Messager,¹ S. Miracle-Sole,¹ C. E. Pfister^{1,2}

Received July 8, 1983

We prove analyticity properties of correlation functions using correlation inequalities.

KEY WORDS: Classical ferromagnets; complex external field.

1. INTRODUCTION

In this note we prove analyticity properties of the correlation functions in the external magnetic field h for some ferromagnetic one-component models, provided |Re h| > |Im h|. Our proof is closely related to the work of Dunlop⁽¹⁾ and is a simple consequence of our extension of the correlation inequalities of Ginibre,⁽²⁾ which we used to study the translation invariant states of the planar rotor model.⁽³⁾ Our results hold in particular for the Ising model. In this case Lebowitz and Penrose proved stronger results, valid for |Re h| > 0.⁽⁴⁾ We also show that the infinite volume limit of a state constructed with a boundary field $h_b > 0$ is independent of the magnitude of h_b and hence equal to the state obtained from + boundary condition. This result was already proved by Lebowitz for the Ising model.⁽⁵⁾

Some of our results, as well as other applications on the absence of symmetry breakdown of continuous symmetry in two-dimensional models, were announced in Ref. 6.

¹ Centre de Physique Theorique, C.N.R.S.—Luminy—Case 907, 13288 Marseille Cedex 9, France.

² Permanent address: Département de Mathématiques, E.P.F.-L., CH-1015 Lausanne, Switzerland.

2. BASIC INEQUALITIES

The main results of this section are the inequalities (2.16) and (2.17). They are summarized at the end of the section. We first consider the Ising model. Let Λ be a finite set. For each $x \in \Lambda$ we have a spin variable s(x). In the absence of interactions the spins are independent random variables and s(x) is distributed according to the probability measure

$$d\mu(s(x)) = \frac{1}{2} \left[\delta(s(x) + 1) + \delta(s(x) - 1) \right]$$
(2.1)

We introduce an external magnetic field h(x) and ferromagnetic interactions described by a two-body potential $J(x, y) \ge 0$. Hence the Gibbs measure is given by the expression

$$Z^{-1}(\lbrace h(x)\rbrace)\exp\left(\sum_{\lbrace x,y\rbrace \subset \Lambda} J(x,y)s(x)s(y) + \sum_{x\in\Lambda} h(x)s(x)\right)\prod_{x\in\Lambda} d\mu(s(x))$$
(2.2)

where the inverse temperature is equal to one and $Z(\{h(x)\})$ is the partition function. Expectation values with respect to the measure (2.2) are denoted by $\langle \cdot \rangle(\{h(x)\})$. In order to study the correlation functions

$$\left\langle \prod_{x \in A} s(x) \right\rangle_{\Lambda} (\{h(x)\}), \quad A \subset \Lambda$$
 (2.3)

with complex external field h(x) we introduce another copy of our system with the external field $\overline{h(x)}$ and we consider the product

$$\Big\langle \prod_{x \in \mathcal{A}} s(x) \Big\rangle_{\Lambda} (\{h(x)\}) \Big\langle \prod_{x \in \mathcal{A}} s'(x) \Big\rangle_{\Lambda} (\{\overline{h(x)}\})$$
(2.4)

We now define new variables by the relations

$$\frac{1}{2}(s(x) + s'(x)) = \cos\theta(x), \qquad \frac{1}{2}(s(x) - s'(x)) = \sin\theta(x)$$
(2.5)

In our particular case $\theta(x) = k(\pi/2)$, k = 0, 1, 2, 3. We notice that

$$s(x)s'(x) = \cos^2\theta(x) - \sin^2\theta(x) = \cos 2\theta(x)$$
(2.6)

and for $\operatorname{Re} h(x) = h_1(x) > |\operatorname{Im} h(x)| = |h_2(x)|$

$$h(x)s(x) + \overline{h(x)}s'(x)$$

$$= h_1(x)(s(x) + s'(x)) + ih_2(x)(s(x) - s'(x))$$

$$= 2h_1(x)\cos\theta(x) + 2ih_2(x)\sin\theta(x)$$

$$= 2k(x)[\operatorname{ch}\lambda(x)\cos\theta(x) + i\operatorname{sh}\lambda(x)\sin\theta(x)]$$

$$= 2k(x)\cos[\theta(x) + i\lambda(x)] \qquad (2.7)$$

where k(x) > 0 and $k^2(x) = h_1^2(x) - h_2^2(x)$. Using the variables $\theta(x)$ the

On Classical Ferromagnets

product of the correlation functions in (2.4) can be written as the expectation value of

$$\prod_{x \in A} \cos 2\theta(x) \tag{2.8}$$

with respect to the Gibbs measure of a \mathbb{Z}_4 model, whose Boltzmann factor is

$$\exp\left\{\sum_{\{x,y\}\subset\Lambda} 2J(x,y)\cos\left[\theta(x)-\theta(y)\right] + \sum_{x\in\Lambda} 2k(x)\cos\left[\theta(x)+i\lambda(x)\right]\right\}$$
(2.9)

Using Proposition 1 of Ref. 3 we find that the expectation value of (2.8) decreases if we set $\lambda(x) \equiv 0$ in (2.9). Therefore we get the inequality

$$\left|\left\langle \prod_{x \in A} s(x) \right\rangle_{\Lambda} (\{h(x)\})\right| \ge \left\langle \prod_{x \in A} s(x) \right\rangle_{\Lambda} (\{k(x)\}) \tag{2.10}$$

Similarly we have for the partition function

$$|Z({h(x)})| \ge Z({k(x)})$$
(2.11)

which implies the result of Dunlop on the zeros of partition functions.⁽¹⁾

Our results are of course valid for any distribution $d\mu(s)$ for which we can apply the method of Griffiths.⁽⁷⁾ In such a case one can express s(x) as a sum of Ising variables $\sigma_i(x) = \pm 1, i = 1, \dots, N$ as

$$s(x) = \sum_{i=1}^{N} \sigma_i(x)$$
(2.12)

and the probability that s(x) = t, computed with respect to $d\mu(s)$, is equal to

$$\left(\sum_{\sigma_1,\ldots,\sigma_N} \exp\sum_{i,j} a_{ij}\sigma_i\sigma_j\right)^{-1} \left(\sum_{\substack{\sigma_1,\ldots,\sigma_N\\\sum\sigma_i=t}} \exp\sum_{i,j} a_{ij}\sigma_i\sigma_j\right)$$
(2.13)

where $a_{ij} \ge 0$. Introducing the variables

$$\frac{1}{2} \left[\sigma_i(x) - \sigma'_i(x) \right] = \cos \theta_i(x), \qquad \frac{1}{2} \left[\sigma_i(x) + \sigma'_i(x) \right] = \sin \theta_i(x) \quad (2.14)$$

and using

$$s(x)s'(x) = \sum_{i=1}^{N} \cos 2\theta_i(x) + \sum_{i>j} 2\cos[\theta_i(x) + \theta_j(x)]$$
(2.15)

we can prove as before the inequality

$$\left|\left\langle\prod_{x\in A}s(x)^{m(x)}\right\rangle_{\Lambda}(\{h(x)\})\right| \ge \left\langle\prod_{x\in A}s(x)^{m(x)}\right\rangle(\{k(x)\}) \quad (2.16)$$

. .

where m(x) are arbitrary positive integers. Similarly

$$Z(\{h(x)\}) \ge Z(\{k(x)\})$$
(2.17)

By a limiting procedure we see that we can take for $d\mu(s)$

$$d\mu(s) = \chi_{[-1,1]}(s) \, ds \tag{2.18}$$

Our results are also valid for the class of measures $d\mu(s)$ considered by Dunlop in Ref. 1. In this class we have for example the measures

$$d\mu(s) = \exp(-\lambda_6 s^6 - \lambda_4 s^4 - \lambda_2 s^2) ds \qquad (2.19)$$

with $\lambda_6 \ge 0$, $\lambda_4 \ge 0$, and λ_2 real and

$$d\mu(s) = \exp\left[-ks^{2n} + P(s)\right]ds \qquad (2.20)$$

with P(s) any even polynomial with positive coefficients, $2n > \deg P$ and k > 0. Letting n going to infinity we get the measure

$$d\mu(s) = \chi_{[-1,1]}(s) \exp\left[P(s)\right] ds \qquad (2.21)$$

[Notice that the case (2.19) with $\lambda_6 = 0$ can be obtained with the method of Griffiths.⁽⁸⁾] Indeed if we introduce

$$\frac{1}{\sqrt{2}} \left[s(x) + s'(x) \right] = r(x) \cos \theta(x) \tag{2.22}$$

$$\frac{1}{\sqrt{2}} \left[s(x) - s'(x) \right] = r(x) \sin \theta(x)$$
(2.23)

then

$$s(x)s'(x) = \frac{1}{2} [r(x)]^2 \cos 2\theta(x)$$
 (2.24)

and in the case (2.19)

$$d\mu(s) d\mu(s') = \exp(-\lambda_6 r^6 - \lambda_4 r^4 - \lambda_2 r^2)$$

$$\exp\left[\cos^2 2\theta \left(\frac{1}{2}\lambda_4 r^4 + \frac{3}{4}\lambda_6 r^6\right)\right] r \, dr \, d\theta$$
(2.25)

From this we get again (2.16) and (2.17) using a straightforward extension of Proposition 1 of Ref. 3 (see the discussion of Model 2 in Ref. 2). The case (2.20) is obtained using the results of Dunlop.⁽¹⁾ Instead of using the variables r(x), one used new variables $\tau(x)$, defined by

$$s(x)^{2n} + s'(x)^{2n} = \tau(x)^{2n}$$
(2.26)

The variable τ can be expressed as

$$\tau^{2n} = r^{2n} \prod_{\substack{k=0\\k \text{ even}}}^{n-2} \left[1 - \cos^2 \frac{(k+1)\pi}{2n} \cos^2 2\theta \right]$$
(2.27)

On Classical Ferromagnets

or

$$r = \tau \prod_{\substack{k=0\\k \text{ even}}}^{n-2} \left[1 - \cos^2 \frac{(k+1)\pi}{2n} \cos^2 2\theta \right]^{-1/2n}$$
(2.28)

Therefore r can be expanded in a power series of the variable $\cos 2\theta$ with positive coefficients.

Finally we prove the following inequalities for $\operatorname{Re} h > |\operatorname{Im} h|$:

$$\operatorname{Re}\langle s(x)\rangle_{\Lambda}(\{h(x)\}) \geq \langle s(x)\rangle_{\Lambda}(\{k(x)\})$$
(2.29)

$$\operatorname{Re}\langle s(x)s(y)\rangle_{\Lambda}(\{h(x)\}) \geq \langle s(x)s(y)\rangle_{\Lambda}(\{k(x)\})$$
(2.30)

with $k(x) \ge 0$, $k^2(x) = [\operatorname{Re} h(x)]^2 - [\operatorname{Im} h(x)]^2$, and

$$\operatorname{Re}\langle s(x)\rangle_{\Lambda}(\{h(x)\}) \ge |\operatorname{Im}\langle s(x)\rangle_{\Lambda}(\{h(x)\})|$$
(2.31)

For example, in the Ising model (2.31) follows from

$$\langle \cos[\theta(x) + i\eta(x)] \rangle_{\Lambda}(\{h(x)\}) \geq \langle \cos\theta(x) \rangle_{\Lambda}(\{k(x)\})$$
 (2.32)

in the duplicated system. But the left-hand side of (2.32) is equal to

$$\operatorname{ch} \eta(x) \operatorname{Re} \langle s(x) \rangle_{\Lambda}(\{h(x)\}) - \operatorname{sh} \eta(x) \operatorname{Im} \langle s(x) \rangle_{\Lambda}(\{h(x)\}) \quad (2.33)$$

Dividing by $\operatorname{ch} \eta(x)$ and letting $\eta(x) \to \pm \infty$ we get the result (2.31). By taking $\eta(x) = 0$ we obtain (2.29). Inequalities (2.31) and the positivity of the left-hand side of (2.29) and (2.30) have already been proved by Dunlop.⁽⁹⁾

SUMMARY

We have proved for a large class of ferromagnetic one-component spin systems with two-body interactions, including all models with a priori measures given by (2.13), (2.19), and (2.21), that the correlation functions, and the partition functions, with a complex external magnetic field h(x), |Re h(x)| > |Im h(x)|, satisfy the inequalities

$$\left|\left\langle\prod_{x\in A}s(x)^{m(x)}\right\rangle_{\Lambda}(\{h(x)\})\right| \ge \left\langle\prod_{x\in A}s(x)^{m(x)}\right\rangle_{\Lambda}(\{k(x)\}) \quad (2.34)$$

and,

$$|Z(\{h(x)\})| \ge Z(\{k(x)\})$$
 (2.35)

respectively, k(x) > 0, $k^{2}(x) = [\operatorname{Re} h(x)]^{2} - [\operatorname{Im} h(x)]^{2}$.

3. APPLICATIONS

In this section Λ is a finite subset of the lattice \mathbb{Z}^d and we assume that $J(x, y) = J(x - y) \ge 0$ is translation invariant and $\sum_x J(x) < \infty$. We also

Messager et al.

assume that the partition functions and the correlation functions are well defined for all Λ and all real magnetic fields h(x).

In our first application we want to give a short proof that

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \left\langle \prod_{x \in \mathcal{A}} \left[s(x) \right]^{m(x)} \right\rangle_{\Lambda}(h) = \left\langle \prod_{x \in \mathcal{A}} \left[s(x) \right]^{m(x)} \right\rangle(h)$$
(3.1)

is an analytic function of the external field $h(x) \equiv h$ for $|\operatorname{Re} h| > |\operatorname{Im} h|$ provided (2.34) and (2.35) are valid. Indeed, since we have free boundary conditions we know, by standard arguments using correlation inequalities, that the limit (3.1) exists and is positive if h is positive. Therefore if $h \in G_0 = \{h \in \mathbb{C} : 0 < \operatorname{Re} h < h_0, \operatorname{Re} h > |\operatorname{Im} h|\}$, then

$$g_{\Lambda}(h) = \frac{1}{\langle \prod_{x \in \mathcal{A}} [s(x)]^{m(x)} \rangle_{\Lambda}(h)}$$
(3.2)

is analytic in G_0 and from (2.34) we see that there exists a constant M such that

$$|g_{\Lambda}(h)| \leq M, \quad \text{all } \Lambda, \quad h \in G_0$$

$$(3.3)$$

The theorem of Vitali ensures that $\lim_{\Lambda \uparrow \mathbb{Z}^d} g_{\Lambda}(h) = g(h)$ exists and defines an analytic function of h in G_0 . Since $g_{\Lambda}(h) \neq 0$ in G_0 and g(h) > 0 for $h \in G_0 \cap \mathbb{R}$, we have by Hurwitz theorem that $g(h) \neq 0$ for $h \in G_0$. This implies that

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \left\langle \prod_{x \in \mathcal{A}} \left[s(x) \right]^{m(x)} \right\rangle_{\Lambda}(h) = \frac{1}{g(h)}$$
(3.4)

is analytic for $h \in G_0$. The case with $\operatorname{Re} h < 0$ is obtained by symmetry. Obviously the proof is valid for other boundary conditions provided we know the existence of the limit (3.1) for h real.

In our second application we consider only bounded spins with finite range interactions and constant external field $h \ge 0$. Without restricting the generality we suppose that

$$\sup\{s : s \in \operatorname{supp} \mu\} = 1 \tag{3.5}$$

and the existence of $R \ge 1$ such that

$$J(x) > 0$$
 if $|x| = 1$ and $J(x) = 0$ if $|x| > R$ (3.6)

Here $|x|^2 = \sum_{i=1}^d |x_i|^2$. For any finite set $\Lambda \subset \mathbb{Z}^d$ we define

$$\partial_R \Lambda = \left\{ x \in \Lambda : \operatorname{dist}(x, \mathbb{Z}^d \backslash \Lambda) \leq R \right\}$$
(3.7)

The + boundary condition for the system in Λ is defined as usual by setting s(x) = +1 for all $x \notin \Lambda$. Equivalently we take free boundary condition and we add a boundary external field acting on $x \in \partial_R \Lambda$,

$$h_b(x) = \sum_{y \notin \Lambda} J(x - y)$$
(3.8)

On Classical Ferromagnets

The existence of the thermodynamic limit for the + boundary condition is a well-known fact. We define a new boundary condition by replacing the boundary field (3.8) by the boundary field

$$h_b(x) = \lambda > 0, \qquad x \in \partial_R \Lambda$$
 (3.9)

with λ arbitrarily small. We claim that the infinite volume equilibrium state $\langle \cdot \rangle^{\lambda}$ obtained from the boundary condition (3.9) is equal to the state $\langle \cdot \rangle^{+}$ obtained from + boundary condition. Indeed, if

$$\lambda \in G = \{\lambda \in \mathbb{C} : 0 < \operatorname{Re}\lambda, \operatorname{Re}\lambda > |\operatorname{Im}\lambda|\}$$
(3.10)

we have for

$$g_{\Lambda}(\lambda) = \frac{1}{1 + \langle s(x) \rangle_{\Lambda}^{\lambda}}$$
(3.11)

and

$$f_{\Lambda}(\lambda) = \frac{1}{1 + \langle s(x)s(y) \rangle_{\Lambda}^{\lambda}}$$
(3.12)

the bounds

$$|g_{\Lambda}(\lambda)| \leq 1, \qquad |f_{\Lambda}(\lambda)| \leq 1$$
 (3.13)

as consequences of (2.29) and (2.30). From the inequalities of Griffiths and for real $\lambda \ge \sum_{x} J(x)$ we have

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \langle s(x) \rangle_{\Lambda}^{\lambda} = \langle s(x) \rangle^+$$
(3.14)

and

$$\lim_{\Lambda \uparrow \mathbb{Z}^d} \langle s(x)s(y) \rangle_{\Lambda}^{\lambda} = \langle s(x)s(y) \rangle^+$$
(3.15)

Using the theorems of Vitali and Hurwitz as in the first application we get that $\lim_{\Lambda} \langle s(x) \rangle_{\Lambda}^{\lambda} = \langle s(x) \rangle^{\lambda}$ exists and is analytic in $\lambda \in G$, hence is equal to $\langle s(x) \rangle^{+}$ for $\lambda > 0$. Similarly $\langle s(x)s(y) \rangle^{\lambda} = \langle s(x)s(y) \rangle^{+}$ if $\lambda > 0$. Our assumption (3.6) implies that

$$\langle s(x)s(y) \rangle^+ > 0, \qquad |x-y| = 1$$
 (3.16)

From this and the preceding results we obtain using the inequalities of Lebowitz⁽¹⁰⁾ that $\langle \cdot \rangle^+ = \langle \cdot \rangle^{\lambda}$. [We use (3.16) if $\langle s(x) \rangle^+ = 0$, in order to prove that all odd correlation functions are zero and all even correlation functions are equal to those of $\langle \cdot \rangle^+$.]

Remark. Our second application concerning the boundary field is also valid for the planar rotor model since Dunlop proved in Ref. 9 the inequalities

$$\operatorname{Re}\langle\cos\theta(x)\rangle_{\Lambda}(\{h(x)\}) \ge 0 \tag{3.17}$$

(3.18)

$$\operatorname{Re}\langle \cos \left[\theta(x) \pm \theta(y) \right] \rangle_{\Lambda}(\{h(x)\}) \geq 0$$

valid for $\operatorname{Re} h(x) > |\operatorname{Im} h(x)|$, where h(x) is an external field

$$-\sum h(x)\cos\theta(x) \tag{3.19}$$

By arguing as above the result follows then from Ref. 3, which contains the generalization of Ref. 10 for this model.

ACKNOWLEDGMENTS

C.E.P. thanks the members of the Centre de Physique Théorique, CNRS Marseille, for their hospitality while this work was carried out.

REFERENCES

- 1. F. Dunlop, J. Stat. Phys. 17:215-228 (1977).
- 2. J. Ginibre, Commun. Math. Phys. 16:310-328 (1970).
- 3. A. Messager, S. Miracle-Sole, and C. E. Pfister, Commun. Math. Phys. 58:19-29 (1978).
- 4. J. L. Lebowitz and O. Penrose, Commun. Math. Phys. 11:99-124 (1968).
- 5. J. L. Lebowitz, in *Quantum Dynamics Models and Mathematics*, ed. L. Streit (Springer, New York, 1976), pp. 201-220.
- S. Miracle-Sole, Colloquia Mathematica Societatis Janos Bolyai 27, Random Fields, Esztergom (Hungary), pp. 767-786 (1979).
- 7. R. B. Griffiths, J. Math. Phys. 10:1559-1565 (1969).
- 8. B. Simon and R. B. Griffiths, (1973). Commun. Math. Phys. 33:145-164 (1973).
- 9. F. Dunlop, J. Stat. Phys. 21:561-572 (1979).
- 10. J. L. Lebowitz, in *Mathematical Problems in Theoretical Physics* (Lecture Notes in Physics No. 80, Springer, New York, 1977), pp. 68-80.

and